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A Prepared Pattern with Wavelength 
Selection in Directional Solidification 

P. E. Cladis  1 

As crystal growth is a vital link in the long chain of processes leading to state- 
of-the-art technological devices, a great deal is known about patterns formed at 
the solid-liquid interface of a growing crystal. However, some basic questions 
are still unanswered concerning macroscopic features exhibited by a moving 
solid-liquid interface. Even for the first instability, the cellular instability, a 
unique steady-state wavelength 2 does not emerge from theory. Furthermore, 
while wavelength selection is observed in many different materials, its origin is 
still to be discovered. By breaking continuous rotational symmetry of the flat 
solid-liquid interface about the pulling direction v, we prepared a cellular 
pattern with a well-defined wavelength by front propagation into the unstable 
uniform state. The material is succinonitrile and the rectangular interface 
geometry is formed by loading it into a flat capillary. The capillaries are chosen 
to provide a sample thickness Yo = 100 pm ~ 2, and width 10y0 and 20y0. We 
use a high-resolution directional solidification apparatus and grow the crystal 
from grain-boundary-free seed crystals. Surprisingly, the shape of the groove 
next to the uniform state is initially well-described by nearly self-similar 
Gaussians. This suggests that the initial perturbation of the interface is localized 
to a region 2/2 around a groove. A pattern with a well-defined wavelength is 
established when the half-width of.the Gaussians 40 ~ 16/~m is small compared 
to ). ~ 80 pm so there is little overlap between a groove and its predecessor or 
successor. When overlap is significant, the pattern is time-dependent. These 
results suggest that wavelength selection in this prepared pattern is a conse- 
quence of front propagation of a localized perturbation. 

KEY WORDS: Directional solidification; pattern formation in nonlinear, 
dissipative systems. 
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1. I N T R O D U C T I O N  

Directional solidification is a model pattern-forming system/it of the types 
of structures that can arise in nonlinear, nonequilibrium, dissipative 
systems. (2~ In recent years there has been a surge in activity toward 
developing a conceptual framework for predicting the dynamical behavior 
of such systems that range from steady coherent structures to fully 
developed turbulence. (3) Similar to the major advance in critical 
phenomena, (4) the ambitious reach for a new level in understanding of 
pattern formation in nonequilibrium systems includes the search for a 
global description of the phenomena, a classification of singularities, and 
an understanding of universality properties. (5) 

The cellular pattern emerges as a universal macroscopic structure 
(pattern) with wavelengths ranging from ~ 10  3 t o  ~ 10  - 3  cm, in several 
nonlinear, nonequilibrium (driven) systems. Here, we mention only a few 
cases. Figure 1 shows a cellular pattern observed on the beach in El 
Segundo, California. (6) Its wavelength 2 is ~25 feet, well-defined, and the 
largest we know. Similar patterns are observed in Langmuir-Blodgett films 
(2,,~ 10 #m), (7/ in the wetting process, (8) in a temperature gradient at the 
moving interface of liquid-liquid phase transitions (2~40-140  ~m), (9) in 
Saffman-Taylor experiments, (1~ and at a gas-liquid interface in the 
"printer instability" ( 2 ~  a few mm). (m 

As crystal growth is a vital link in the long chain of processes leading 
to state-of-the-art technological devices, the most well-studied cell pattern 
(however, only recently in the context of unanswered questions of pattern 
formation) (1) occurs in the solidification process, (12) the system we consider 
here. When the material is not a single-component system, the rough solid 
(crystal)-liquid interface exhibits a cellular pattern above a critical growth 
speed or pulling speed rob with ,~ ~ 100 #m. 

In their review, Hohenberg and Cross distinguish between "prepared 
patterns" and "natural" patterns. (s) They point out that prepared patterns 
should more closely resemble the "ideal" patterns of theorists. From an 
experimentalist's point of view, if a pattern can be prepared, then, clearly, 
that indicates some degree of control over the experiment. One is then 
encouraged to try new experiments to test the understanding implied by 
the ability to prepare a pattern. 

Although not unknown in nature (e.g., snowflakes), a common feature 
of prepared patterns in the laboratory is that the scale of correlations is 
much larger than in "natural" patterns. For  example, by introducing a 
weak oscillatory flow around a growing crystal, Bouissou e t a l .  ~13) '2  

2 In this thesis, Bouissou notes that the parabolic character of a cell tip results when one 
considers that z ~ t (driven), whereas x ~ t ~/2 (diffusion); therefore, z ~ x z. 
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prepared a dendrite with periodic and correlated side-branching. Without 
this forcing, the dendrite side-branching is not correlated, so that large- 
scale features of its self-organization are less evident. (14~ Owing to the larger 
scale, a clearer distinction can be made between features of the pattern due 
to noise ~15~ (e.g., noise-sustained structures(16); e.g., Fig. 1?) and deter- 
ministic physical processes driving pattern formation in nonequilibrium 
systems. 

Here we describe how we prepared a pattern in directional solidifica- 
tion of succinonitrile. The first step in its preparation is to use a confined 

Fig. 1. The cellular pattern observed on the beach at E1 Segundo, California. It is not under- 
stood how this pattern forms. The wavelength of the cells is about 25 feet. (From ref. 6.) 
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geometry with well-defined boundary conditions at the perimeter of the 
interface. We call such an interface a bounded interface to distinguish it 
from one that is infinitely extended. The second step is to simulate front 
propagation of the cellular pattern into the unstable planar state by 
breaking the continuous rotational symmetry of the flat interface about v. 

Let 0 symbolize a groove, the object that we propagate across the 
interface, and call e a measure of distance from threshold, e < 0 means that 
the driving force for pattern formation is below threshold, so q/ cannot 
grow as OO/Ot < 0, where t is time. At threshold, e = 0 and the pattern is 
marginally stable, Otp/Qt = 0. When e > 0, the driving force is sufficiently 
large to form the pattern (OO/~t > 0), thus, 0 r 0. 

As the pattern propagates across the interface, it provides a visual 
summary of 0 from below threshold (~ = 0, the planar state and e < 0) to 
above threshold (O r 0 and e > 0). The change in ~ at a fixed position on 
the interface x~ is, in principle, related to distance from threshold e. Thus, 
we studied a groove shape, centered at xn, from onset to above threshold 
as the front swept by xn. Near onset (e > 0), ~, was two-dimensional and 
surprisingly well-described by nearly self-similar Gaussians, suggesting a 
response to a local perturbation where curvature effects are nonnegligible. 

2. D IRECTIONAL SOLID IF ICATION AT THE 
S O L I D - L I Q U I D  INTERFACE 

In directional solidification, a transparent alloy is placed in a 
temperature gradient G. The crystal state is forced to grow by pulling the 
sample at a constant speed v parallel to G, toward a cold contact. (17) 
Above a critical pulling speed (Is) Vcb, the interface develops a cellular 
structure (wavelength 2 ~ 100 pro) often with deep grooves (Fig. 2). 

Succinonitrile is the material used in these studies because its solid- 
liquid interface is rough, and it is transparent and chemically stable. 
Jackson and Hunt (19)'3 were the first to study, by direct visual observation, 
transparent materials in a temperature gradient. From their studies, we 
gained insight into the physial processes responsible for patterns at the 
growing crystal-liquid interface of metals and semiconductors. For example, 
Jackson was the first to point out that the cellular pattern occurs only at 
a rough solid-liquid interface(2~ on a microscopic scale, the interface is 
not defined. On the other hand, a faceted interface, well-defined on a 
microscopic scale, does not exhibit cells at any length scale. These facts link 
the cellular structure in solidification to the old and deep question of 

3 The materials they studied include succinonitrite, salol, carbon tetrabromide, and its 
eutectics. 
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pattern formation: how does disorder at small scales self-organize into 
order at large scales?! 1) 

The instability onset for an infinitely extended solid-liquid interface 
was first analyzed by Mullins and Sekerka. (18) As material solidifies behind 
a planar interface, a concentration gradient develops on the liquid side. In 
the steady state and when there is no diffusion in the solid state (one-sided 
approximation),  then, on the liquid side, impurity increase by crystal rejec- 
tion is balanced by impurity diffusion away from the interface. The result 
is an exponential profile for impurity concentration c as a function of 
distance z from the interface in the comoving frame z = z ' - v t ,  the frame 
of reference attached to the flat interface. In this frame, the liquid is at 
z > 0 and the solid at z < 0 and the frame moves parallel to v. 

At a planar interface, the characteristic length lo associated with the 
exponential decay of c(z) is given by D/v, with D the impurity diffusion 
constant in the liquid. The faster the crystal grows (larger driving force, w) 
the steeper the concentration gradient (smaller lD=D/v). At an lD such 
that the concentration gradient at the interface is greater than the equi- 
librium liquidus slope at TL, a small perturbation of solid away from the 
solidus temperature into the liquid is in contact with liquid at a lower tern- 

Fig. 2. The cell pattern consists of cell tips and grooves. The frame of reference is that z in 
a comoving frame is perpendicular and x parallel to the common tangent of the cell tips. y 
is out of the plane. The flat interface defines z x = 0. 
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perature and concentration than the equilibrium T c so it can grow despite 
the stabilizing effects of the thermal gradient (at long wavelengths) and 
surface effects (at short wavelengths). (21) This qualitative destabilizing 
mechanism of a planar interface is known as constitutional supercooling and 
has been quantified by Mullins and Sekerka for a sinusoidal perturbation 
of the interface. 118) 

The experimental observation, in qualitative agreement with theory 
(see, e.g., ref. 22), is that the perturbation grows by moving to higher tem- 
peratures to form the tip feature of the pattern (Fig. 2). As the tip is at a 

tip higher temperature, the impurity concentration in the liquid at the tip (c L ) 
decreases relative to that of the flat interface, c ~ . Impurity loss at the tips 
is impurity gained by the grooves. Being richer in impurity than the tips, 
on both the so.lid and the liquid side of the interface, c L g . . . . .  • cOL > ctiPL ' the 
grooves extend away from the tips toward the cold contact (Fig. 2). 

In a constant temperature gradient tGI, temperature is mapped onto 
a spatial dimension z. In addition, the equilibrium phase diagram gives a 
linear relation between concentration of impurity at the interface and tem- 
perature. The interface position in G, i.e., zz(x, y, t), corresponds to the 
melting temperature of cL(x, y, t) minus a correction due to the change in 
the melting temperature in the presence of curvature, tc 4 Two more lengths 
emerge, the thermal length l r  and the chemical capillary length d. 

To see how these two lengths enter the problem, a small-amplitude 
sinusoidal perturbation in concentration, 

 L(x)-c ~ 
6 = 6o sin qx = 

Coo 

where coo is the concentration in the liquid far from the interface, is applied 
to the flat interface. (~8) The interface responds with zz= ~ sin qx. Both rio 
and ~ are small. Then, 

d2z//dx2 ~ (  ) sin qx (1) 
-6(x)= +d[l+(az,/dx)2]3/2  -?tq 

In Eq. (1), lr = A T/G with zt T the width of the two-phase region associated 
with c~. From calorimetry measurements, we estimate A T ~  3 K. Thus, 
l r  ~ 440/~m, while the chemical capillary length s162 200 _~.5 If 

4 In the Gibbs-Thompson effect, the sign of x is chosen so that a "bump, of solid to higher 
temperatures melts, whereas a "bump" of liquid to lower temperature freezes. 

5 See, e.g., ref. 23 for a summary of the useful physical constants of succinonitrile, do, the 
capillary length, is defined as the ratio of surface energy 7 = 9 ergs/cm 2 to the latent heat/unit 
volume T,~ ASm = 4.6 x l0 s ergs/cm 3. One has a = a~ 0 T,,/A T. 
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27r/q>> 20/~m, curvature effects are small compared to 1/lr and z l / I r ~  
-6(x). 

Thus, for patterns where curvature effects are negligible, a 2D cell pat- 
tern is a visualization of impurity distribution at the interface. Studying 
macroscopic cell shapes and shape changes at the planar-cellular or 
cellular side-branching bifurcations is a measure of the distribution/ 
redistribution of impurities. The striking feature to emerge is that curvature 
supports an impurity deficit at the tips relative to the grooves. By 
increasing groove curvature, for a given 6(x), the groove extends further 
away from z1=0 than the tips that are comparatively weakly curved 
(Fig. 2). The cellular pattern in solidification, driven by curvature effects, is 
thus an important example of self-organization in a nonequilibrium system. 

A broad band of wavelengths are unstable in the Mullins-Sekerka 
analysis, not just a single wavelength. ~8) This raises the question, recently 
a subject of growing theoretical activity ~24~ in the context of pattern forma- 
tion, of why the observed band is so small. 

3. W A V E L E N G T H  S E L E C T I O N  

Roughly speaking, the interface overcomes the stabilizing effect of the 
thermal gradient (i.e., transforms or bifurcates to a cellular one) at a criti- 
cal pulling speed vc~ when lD ~ Iv. (~) In the weakly nonlinear regime, owing 
to continuous translatioal and rotational symmetry of the planar interface 
about v, periodic states can exist above threshold with a continuous band 
of wave numbers. (25'26) Given the available large band of wavelengths, why 
and how does the pattern choose one 2? 

In a recent paper, Eshelman and Trivedi(27! dramatically demonstrated 
the magnitude of the discrepancy between theory and observation in direc- 
tional solidification. They compared their observations on succinonitrile to 
the theoretical dependence of the critical speed on wave number for both 
marginally stable and fastest-growing wave number. On scales set by 
theory, all their data, spanning more than one decade in pulling speed v, 
lie on a nearly vertical line. In agreement, our observations are that while 
there is no long-range periodicity (only an average wavelength, (2 ) ) ,  when 
v > vc2, the observed band is less than a factor of 2, (28) but with a strong 
dependence on sample thickness. 

In practice, both pattern dynamics and wavelength selection are sen- 
sitive to sample thickness Yo. In theory, the interface, z~ is treated as infinite 
in one dimension (y) or both dimensions (x, y). In fact, when Yo "> ( 2 )  
40/~m, several rows of cells along y are formed resulting in a pattern that 
is difficult to study by image analysis. When Yo ~ 2, the pattern is time 
dependent in wide samples ( - o e  < x < o o ) ,  whereas at long times, 
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) .~250/~m~ 5y 0 in the bounded capillary geometry. Thus, boundary 
effects play a significant role in wavelength selection in experiments where 
the interface is never infinitely extended in either one or two dimensions. 
Indeed, they may be one of the strongest factors contributing to the large 
discrepancy between theories and observations. We will describe how 
boundary effects and front propagation can be used to prepare a pattern 
with a well-defined wavelength in samples where Yo ~ 2. 

For a supercritical bifurcation, Dee and Langer (29) first proposed front 
propagation as a dynamic wavelength selection mechanism: the wavelength 
is a unique function of the control parameter, e ~ v -  vcl. The well-defined 
wavelength in the propagating pattern we prepare may be the first example 
of wavelength selection mediated by front propagation in directional 
solidification. (~~ Although we succeeded in preparing a pattern, we cannot 
exclude the influence of other wavelength selection mechanisms, such as 
ramps (~ is a function of X) (31) and symmetry breaking. (32) A theoretical 
analysis is needed to answer questions on how these mechanisms compete 
or enhance each other in the selection process. For example, does front 
propagation in a ramp improve wavelength selection? 

4. PREPARATION OF A PATTERN BY FRONT PROPAGATION 

For our experiments, succinonitrile is vacuum-loaded into a flat glass 
capillary: width L, 1 or 2mm; thickness, 100#m; length, 50mm. 
Measurements are made using a high-resolution directional solidification 
apparatus (28) and crystals grown from a defect-free seed crystal. We 
attribute the novel effects to be described to an impurity gradient parallel 
to the interface that develops in the capillary geometry when V~Vcb 
because, initially, the interface is not perpendicular to v ]] G (Fig. 3). 

We obtain a propagating mode by breaking the continuous rotational 
symmetry of the extended flat interface around v (and G l] v). However, the 
pattern that propagates one groove at a time into the planar state is asym- 
metric relative to v because of boundary effects. 

In our apparatus, the maximum pulling distance, effected by a step- 
ping motor (smallest step size 0.1/~m) is 25 mm. A frequency generator 
controls step rate to one part in 10 6. In these experiments, G = 7.5 K/ram 
and the separation between hot and cold contacts is 4 mm. A high-speed 
imaging system records the x - z  plane through an automated video system 
attached to an optical microscope observing the interface along its smallest 
dimension, the y axis. 

Grain-boundary-free seed crystals are obtained by repeatedly freezing 
then melting the sample in G. (33) In addition, interface position 
measurements during melting give a value for the "dynamical" partition 
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Fig. 3. Schematic of an Ix, z] plane of the experimental geometry to prepare patterns 
viewed along y, the thinnest dimension of the capillary, 100 #m. The edges of the hot  and cold 
contacts are the slanted parallel lines. Both G and v are perpendicular to the edges of the hot 
and cold contacts that are 4 m m  apart. The capillary (width 1 or 2 mm)  is made up of the 
pairs of horizontal parallel lines at a small angle to G (in the experiment ~ 1.5-3~ Top: The 
sample is at rest and the interface is observed perpendicular to the capillary side walls. 
Middle: When v ~ v c b ,  the planar interface develops a long-wavelength perturbation of 
amplitude A. Bottom: The cellular pattern propagates from the less pure end of the interface, 
i.e., the end closer to the cold contact. The dotted line tangent to the cell tips is perpendicular 
to G 1[ v. While cell tips are perpendicular to v, grooves are parallel to the side walls: the 
pattern is asymmetric. 

coefficient k of 0 .6  (33) assuming a liquid impurity diffusion constant of 
1.0 x 10 .5 cm2/sec. 6 We recall that for k > 0.45, the planar~zellular bifurca- 
tion is predicted to be supercritical. (35t Our  method to determine rob is to 
measure the pulling distance du for the onset of the cellular pattern at 
different speeds, (361'7 then plot 1/du vs. pulling speed v and extrapolate to 
zero to obtain a "bulk" critical pulling speed rob = 1.12 #m/sec. 

6 We do not know the impurity present in our samples; however, Chopra  et al. ~34) measure 
D =  1.27x 10 - s  cm2/sec for succinonitrile/acetone and D = 0 . 8 8  x 10-Scm2/sec for 
succinonitrile/argon. 

7 The speed v is constant,  so d~ is the product of v and the time for the cellular pattern to 
appear when v > Vcb. As v -~ vcb , d~ ~ oo. And when v < V~b, d~ is undefined: the planar inter- 
face is stable. This method is useful if the interface becomes unstable everywhere at the same 
time, which it does when v > 3You. 
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When solidification begins with v ~ Vcb, the amplitude A (defined in 
Fig. 4) of a long-wavelength perturbat ion from the planar state increases 
from zero, peaks at A . . . .  then decreases when grooves begin to form 
(Fig. 4). Amax decreases linearly with v, is independent of sample width, and 
is zero when v=vc2=2.9#m/sec (inset, Fig. 4). The amplitude A only 
grows while the interface is smooth,  i.e., no grooves, d < du. 

Our  interpretation is the following. At rest, to minimize surface energy, 
the solid-liquid interface z~(x, 0) of succinonitrile in a capillary is per- 
pendicular to the side walls and not  to G even when the capillary is at a 
small angle (1.5-3 ~ to G (Fig. 3). (33) When solidification begins with v 
parallel to G, and while the interface is smooth  ( d <  d,), an impurity flux 
develops parallel to it because v has a componen t  along the interface 
driving impuri ty away from x = +L/2 toward x = -L/2. When the inter- 
face is perpendicular to v, the sign of its componen t  parallel to the interface 
changes, yet A continues to grow when v < vc2. In a sense, we have made 
half of a large cell with its tip at x = +L/2 and its groove at x = -L/2. 

Fig. 4. Inset: Digitally enhanced image of the interface undergoing the initial long- 
wavelength distortiofl. The vertical white lines are shadows from the capillary side walls and 
the horizontal white line is the rest shape of the interface. The main figure shows the growth 
of the amplitude A vs. time t. At Amax, cells start to form at -L/2. Pulling speed 
v = 1.25 t*m/sec. Smaller graph: Area. vs. v. 
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The interface is unstable first at x = - L / 2  (Fig. 4). When d, is large, 
Area x is large. When v > 3 v c b ,  the planar-cellular transition occurs 
simultaneously everywhere on the interface, the effect is not observed, and 
the pattern is time-dependent. 

When v > vcl, grooves of liquid "propagate ''8 from the colder end of zr 
to the warmer end (Fig. 5) at speed vj. They stop at x~ ,  where x ~  < L / 2  
when v < 2v~.1, or, x~  = L/2  when v > 2vcl. The grooves remain parallel to 
the long axis of the capillary so their positions x n are fixed. However, the 
common tangent of the cell tips is perpendicular to v, making the cell pat- 
tern asymmetric (Fig. 3). When v=  1 #m/sec, the time between successive 
groove formation (Fig. 5) is approximately r ~ D/v  2, whereas at 2.5 b~m/sec 

8 We use "propagate" for the groove pattern in the sense of van Saarloos, (37) i.e., the envelope 
of the groove pattern moves continuously across the interface, while a single groove keeps 
its place on the interface. 

Fig. 5. Inset: Digitally enhanced image of cell pattern when x~ is at groove 11. Determina- 
tion of the front speed vf: position of the groove that leads the propagating pattern (xn) as 
a function of time. v = 1/~m/sec. The front speed is different near the capillary edges. The gap 
in the data is where the magnification was increased to study the groove evolution in more 
detail (e.g., Fig. 6). Smaller graph: Front speed vf  vs. v 2. The slope is ~ 22/D _+ 20 %, i.e., 
vj ~ ( 2;~/ D )( v 2 - v~ O. 
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it is closer to r/2. The smaller graph in Fig. 5 shows v s as a function of v 2. 
The slope of the best line is 22/D_+20%, i.e., vs.~ (22/D)(v 2 -  2 Vcl ), giving 
Vc~ = 0.8 ~m/sec. When 0 < v < v~,  grooves do not occur. 

l D 2 2 The time between groove appearance is proportional to ~ /(v -V~l) .  
In that time, the front travels a distance 2. As usual, a threshold increases 
the time as v ~ yea. As noted above, when D >> v~,, the time between suc- 
cessive groove formation is half a diffusion time, whereas it is one diffusion 
time when v = 1 #m/sec ~ 1.2v~. 

When Vc~ < v < vc2, power spectra ~ of the groove patterns have a 
sharp peak at a )o = 2rC/qo that varies from 81 +_ 3/~m at v =  1/~m/sec to 
70___ 2 #m at v ~ v~ 2. In contrast, the spectra for time-dependent patterns 
when v > v~2 are too broad to determine 2. (33) 

5. G R O O V E  S H A P E  (qJ) SELECTION 

While shape changes with pulling speed in the tip region have been 
studied in great detail with image analysis for stationary patterns (3s) and 
traveling patterns, (39) very little is known about groove shapes. However, 
Weeks and van Saarloos/4~ have studied the shape of deep grooves 
theoretically. In this limit a power-law behavior is expected (Scheil-Hunt 
law). Thus, the study of 2D grooves is a useful supplement to studies of the 
tip region that may shed some light on the wavelength selection problem 
in solidification. We will describe how a 2D groove grows (3~ continuously 
from zero amplitude. Surprisingly, we found it was well-described by 
Gaussians. 

The grooves we studied were the lead grooves of a cellular pattern that 
was propagating into the unstable planar state ( t )=0) .  When the 
propagating pattern is observed at x , ,  say, the control parameter e is 
mapped onto time t. Before the front passes xn, 8 < 0 and ~ = 0. When the 
front arrives at x , ,  the groove amplitude t) is marginally stable (8 = 0). As 
the front passes, IOlmax --=fl grows as e increases. We observed lOlmax grow 
continuously from zero (at onset, e = 0) to above threshold (e > 0), where 

became three-dimensional: O(x, t) ~ ~(x, y, t). 
Since grooves form sequentially in the propagating pattern and their 

center IO]max is fixed, we analyzed the shape [~: Zl(X, t)] of the lead 
groove in the pattern, i.e., the groove adjacent to the planar state. When 
vcl < v < vc2 and as a function of time, its shape is described by nearly self- 
similar Gaussians in x. Figure 6a shows the evolution of a lead groove zl 
when v = 1 ~m/sec ~ vc~. 

For  convenience, we choose a frame of reference where z~-Zo >i 0 is 
measured relative to the minimum of the pattern at za (Fig. 6a). We 
digitized and fitted z~ to inflating Gaussians, z l = Zo + f ~ ( t ) ( 1 - f ) ,  where 
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Fig. 6. (a) Images of lead groove formation when A # 0. The pulling distance d in m m  is 
shown on the figure, v = 1 pm/sec and d =  d o + vt. Here zz(u, t) is the interface between the 
solid and its melt. The groove amplitude is zero at do = 1.51 mm. When the groove becomes 
three-dimensional between d =  1.59 and 1.61 ram, a new groove replaces it as pattern leader. 
The fits to Gaussians  are the overlaid white lines. The vertical bar defining the z axis is 38 #m 
and the horizontal one defining the u axis is 79/~m. (b )Time dependence of the amplitude f l  
(O)  and width Go (O)  from the fits in part (a). The solid line for ~o is a fit to 1/t 1/4 and for 
f l  to t 1/2, so f l  ~ 1/r The jumps  in ~0 and f l  correlate with the start of the growth of the next 
groove. 
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f=exp(-u2/24~),  u = x - x ,  and x n is the groove center. The fit 
parameters f l  and 4o depend on time, while x~ and z 0 do not. The fitting 
error is ~ 5 %. When t > r, a new groove leads the pattern (next groove 
starts) correlating with jumps in both 4o and f l  (Fig. 6b) as well as the 
onset of 3D effects (Fig, 6a) in the retiring groove. This suggests that a 
stationary pattern of Gaussian grooves (no 3D effects) may be stabilized in 
a thinner sample (see, e.g., ref. 41). 

Initially, ~o decreases as 1~(d-do) 1/4 and f~ increases as (d-do)  1/2 
(Fig. 6b). Here d= do + vt and d o is the pulling distance where a groove 
starts to grow. The fitted do values agree with the observed values to _+ 1%. 
Here f l  ~ is a constant that should emerge from a theory of this process. 

We note the following. 

1. Taking all the measured points, ( 4 o ) = 1 6 . 2 # m ,  so that 2 is 
approximately given by 5(40) .  While the overlap between the Gaussian 
of a groove and its predecessor (or successor) is small, a pattern with a 
selected wavelength is established. (33) When overlap is significant, e.g., 
when v > v~2 or A = 0, there is no wavelength selection (33) and the pattern 
is time dependent. (28/ 

2. When t < z, the groove amplitude f l  ~ xfl t suggesting its growth is 
like diffusion (Fig. 6b). While the diffusion equation predicts that a 
6-function decays irreversibly via Gaussians, here, the Gaussian grooves 

sharpen like ,~- ,  implying a self-organizing process not classical diffusion. 
Furthermore, ( ~ o ) ~  2n(lrd) ~/2: the displacement of the groove relative to 
the fiat interface because of impurity increase at the groove is comparable 
to groove curvature [Eq. (1)]. Thus, except during the initial transient, 
curvature effects are not negligible during groove formation. 

3. When r >  t > r / 5 ,  

Zz(X, t ) - z o - f ~ ( t )  
=f -A(t) 

with f independent of time, is an excellent approximation. When t > z/5, the 
Gaussians in Fig. 6a are nearly the same when f l  is scaled out. 

4. While a groove deepens relative to the flat interface, the tip advan- 
ces, preparing the site of the next groove position in the propagating pat- 
tern (Fig. 2). The picture is that groove formation introduces a localized 
modulation in an initially uniform concentration profile parallel to the 
interface. To sustain its initial growth, the groove drains impurities from 
the tip region. Once groove curvature is sufficient to maintain its displace- 
ment for a given boundary condition, 6 in Eq. (1), the next groove starts. 
The uniform rate of groove formation then emerges as a consequence of 
boundary conditions set by the solid-liquid interface. 
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5. A theory is needed to explain why the grooves should or should 
not be Gaussian. Here we only point out that Gaussians are a natural 
choice if one imposes localization on the groove shape, that is, requiring zt 
and all its derivatives to be zero at __ oo and dzz/dx = 0 at x = 0 where zz 
is maximum. It would also be interesting to know if wavelength selection 
results when a parabolic shape u3~ is required for the tip and a Gaussian 
shape for grooves. 

These measurements supplement information obtained on the cell 
shape in the tip region of the cellular pattern (3a) and show how impurities, 
driven by curvature, self-organize in solidification. Furthermore, the system 
achieves this starting from a localized perturbation with zero initial cur- 
vature. As the amplitude grows, the half-widths decrease until the groove 
curvature balances its displacement from the planar interface. As far as we 
know, they are the first measurements of groove shapes at the solid-liquid 
interface. An impressive feature is that once grooves form parallel to the 
side walls, a stationary wavelength is established. 

6. C O N C L U S I O N S  

We have prepared a cellular pattern with a well-defined wavelength in 
directional solidification when Y0 ~ 2 = 100 #m. While there is not yet a 
theory to describe our observations, prepared patterns are expected to 
more closely resemble the ideal patterns of theory. We have shown that 
when the pattern evolves from front propagation in a ramp, it has a well- 
defined wavelength and is asymmetric: the grooves are parallel to the 
capillary side walls (boundary effect), whereas cell tips are perpendicular to 
v (the driving force). Boundary effects are essential in the preparation of 
this pattern. When e > 0 ,  the groove shapes are two-dimensional and 
Gaussian, suggesting that, in contrast to a sinusoidal perturbation, the 
grooves in Fig. 6a are a response to a local perturbation. While a broad 
band of wavelengths are unstable for sinusoidal perturbations, wavelength 
selection may be a consequence of a local perturbation if v < Vc2. Close to 
threshold in the self-organization process, the groove amplitude grows like 
x~- and the half-widths decrease like l i t  1/4. 
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